[ad_1]
Jaffray, D. A. & Gospodarowicz, M. K. in Cancer: Disease Control Priorities 3rd edn, Vol. 3 (eds Gelband, H. et al.) (The International Bank for Reconstruction and Development/The World Bank, 2015).
Liauw, S. L., Connell, P. P. & Weichselbaum, R. R. New paradigms and future challenges in radiation oncology: an update of biological targets and technology. Sci. Transl. Med. 5, 173sr172 (2013).
Google Scholar
Wambersie, A. ICRU Report 62, Prescribing, recording and reporting photon beam therapy (supplement to ICRU Report 50). ICRU News (1999).
ICRU Report 50. Prescribing, I. Recording and Reporting Photon Beam Therapy (International Commission on Radiation Units and Measurements, 1993).
Bucci, M. K., Bevan, A. & Roach, M. 3rd Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA Cancer J. Clin. 55, 117–134 (2005).
Google Scholar
Ling, C. C., Yorke, E. & Fuks, Z. From IMRT to IGRT: frontierland or neverland? Radiother. Oncol. 78, 119–122 (2006).
Google Scholar
Sandler, H. M. et al. Three dimensional conformal radiotherapy for the treatment of prostate cancer: low risk of chronic rectal morbidity observed in a large series of patients. Int. J. Radiat. Oncol. Biol. Phys. 33, 797–801 (1995).
Google Scholar
Lin, C. et al. Effect of radiotherapy techniques (IMRT vs. 3D-CRT) on outcome in patients with intermediate-risk rhabdomyosarcoma enrolled in COG D9803—a report from the Children’s Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 82, 1764–1770 (2012).
Google Scholar
Ezzell, G. A. et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med. Phys. 30, 2089–2115 (2003).
Google Scholar
Xing, L. et al. Overview of image-guided radiation therapy. Med. Dosim. 31, 91–112 (2006).
Google Scholar
Sterzing, F., Engenhart-Cabillic, R., Flentje, M. & Debus, J. Image-guided radiotherapy: a new dimension in radiation oncology. Dtsch Arztebl. Int. 108, 274–280 (2011).
Van Herk, M. Errors and margins in radiotherapy. Semin. Radiati. Oncol. 14, 52–64 (2004).
Bortfeld, T., Jokivarsi, K., Goitein, M., Kung, J. & Jiang, S. B. Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation. Phys. Med. Biol. 47, 2203–2220 (2002).
Google Scholar
Brock, K. K. & Dawson, L. A. Adaptive management of liver cancer radiotherapy. Semin. Radiat. Oncol. 20, 107–115 (2010).
Google Scholar
Kron, T. Reduction of margins in external beam radiotherapy. J. Med. Phys. 33, 41 (2008).
Google Scholar
Marks, L. B. et al. Use of normal tissue complication probability models in the clinic. Int. J. Radiat. Oncol. Biol. Phys. 76, S10–S19 (2010).
Google Scholar
Thomas, T. O. et al. The tolerance of gastrointestinal organs to stereotactic body radiation therapy: what do we know so far? J. Gastrointest. Oncol. 5, 236–246 (2014).
Ten Haken, R. K., Balter, J. M., Marsh, L. H., Robertson, J. M. & Lawrence, T. S. Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors. Int. J. Radiat. Oncol. Biol. Phys. 38, 613–617 (1997).
Google Scholar
Choi, J.-H., Seo, D.-W., Park, D. H., Lee, S. K. & Kim, M.-H. Fiducial placement for stereotactic body radiation therapy under only endoscopic ultrasonography guidance in pancreatic and hepatic malignancy: practical feasibility and safety. Gut and Liver 8, 88–93 (2014).
Google Scholar
Giraud, P. & Houle, A. Respiratory gating for radiotherapy: main technical aspects and clinical benefits. ISRN Pulmonology 2013, 13 (2013).
Google Scholar
De Los Santos, J. et al. Image guided radiation therapy (IGRT) technologies for radiation therapy localization and delivery. Int. J. Radiat. Oncol. Biol. Phys. 87, 33–45 (2013).
Google Scholar
Balter, J. M. & Cao, Y. Advanced technologies in image-guided radiation therapy. Semin. Radiat. Oncol. 17, 293–297 (2007).
Keall, P. et al. On the use of EPID‐based implanted marker tracking for 4D radiotherapy. Med. Phys. 31, 3492–3499 (2004).
Google Scholar
Berbeco, R. I., Neicu, T., Rietzel, E., Chen, G. T. & Jiang, S. B. A technique for respiratory-gated radiotherapy treatment verification with an EPID in cine mode. Phys. Med. Biol. 50, 3669–3679 (2005).
Google Scholar
Chinnaiyan, P., Tomé, W., Patel, R., Chappell, R. & Ritter, M. 3D-ultrasound guided radiation therapy in the post-prostatectomy setting. Technol. Cancer Res. Treat. 2, 455–458 (2003).
Google Scholar
Kerkmeijer, L. G. W. et al. The MRI-linear accelerator consortium: evidence-based clinical introduction of an innovation in radiation oncology connecting researchers, methodology, data collection, quality assurance, and technical development. Front. Oncol. https://doi.org/10.3389/fonc.2016.00215 (2016).
Liu, H. & Wu, Q. Evaluations of an adaptive planning technique incorporating dose feedback in image-guided radiotherapy of prostate cancer. Med. Phys. 38, 6362–6370 (2011).
Google Scholar
Mijnheer, B., Beddar, S., Izewska, J. & Reft, C. In vivo dosimetry in external beam radiotherapy. Med. Phys. 40, 070903 (2013).
Google Scholar
Islam, M. K. et al. An integral quality monitoring system for real-time verification of intensity modulated radiation therapy. Med. Phys. 36, 5420–5428 (2009).
Google Scholar
Poppe, B. et al. Clinical performance of a transmission detector array for the permanent supervision of IMRT deliveries. Radiother. Oncol. 95, 158–165 (2010).
Google Scholar
Johnson, D., Weston, S. J., Cosgrove, V. P. & Thwaites, D. I. A simple model for predicting the signal for a head‐mounted transmission chamber system, allowing IMRT in‐vivo dosimetry without pretreatment linac time. J. Appl. Clin. Med. Phys. 15, 270–279 (2014).
Google Scholar
Zhang, W. et al. Dual-Modality X-Ray-induced radiation acoustic and ultrasound imaging for real-time monitoring of radiotherapy. BME Frontiers 2020, 9853609 (2020).
Google Scholar
Xiang, L., Tang, S., Ahmad, M. & Xing, L. High resolution X-ray-induced acoustic tomography. Sci Rep. 6, 26118 (2016).
Google Scholar
Oraiqat, I. et al. An ionizing radiation acoustic imaging (iRAI) technique for real-time dosimetric measurements for FLASH radiotherapy. Med. Phys. 47, 5090–5101 (2020).
Lei, H. et al. Toward in vivo dosimetry in external beam radiotherapy using X-ray acoustic computed tomography: a soft-tissue phantom study validation. Med. Phys. https://doi.org/10.1002/mp.13070 (2018).
Hickling, S. et al. Ionizing radiation-induced acoustics for radiotherapy and diagnostic radiology applications. Med. Phys. 45, e707–e721 (2018).
Google Scholar
Hickling, S., Hobson, M. & El Naqa, I. Characterization of X-ray acoustic computed tomography for applications in radiotherapy dosimetry. IEEE Trans. Radiat. Plasma Med. Sci. 2, 337–344 (2018).
Google Scholar
El Naqa, I., Pogue, B. W., Zhang, R., Oraiqat, I. & Parodi, K. Image guidance for FLASH radiotherapy. Med. Phys. 49, 4109–4122 (2022).
Google Scholar
Sothmann, T., Blanck, O., Poels, K., Werner, R. & Gauer, T. Real time tracking in liver SBRT: comparison of CyberKnife and Vero by planning structure-based γ-evaluation and dose-area-histograms. Phys. Med. Biol. 61, 1677 (2016).
Google Scholar
Fuss, M. & Salter, B. J. Intensity-modulated radiosurgery: improving dose gradients and maximum dose using post inverse-optimization interactive dose shaping. Technol. Cancer Res. Treat. 6, 197–203 (2007).
Google Scholar
Oku, Y. et al. Analysis of suitable prescribed isodose line fitting to planning target volume in stereotactic body radiotherapy using dynamic conformal multiple arc therapy. Pract. Radiat. Oncol. 2, 46–53 (2012).
Google Scholar
Zlateva, Y., Muir, B. R., El Naqa, I. & Seuntjens, J. P. Cherenkov emission‐based external radiotherapy dosimetry: I. Formalism and feasibility. Med. Phys. 46, 2370–2382 (2019).
Google Scholar
Zlateva, Y., Muir, B. R., Seuntjens, J. P. & El Naqa, I. Cherenkov emission‐based external radiotherapy dosimetry: II. Electron beam quality specification and uncertainties. Med. Phys. 46, 2383–2393 (2019).
Google Scholar
Wang, G., Ye, J. C. & De Man, B. Deep learning for tomographic image reconstruction. Nat. Mach. Intell. 2, 737–748 (2020).
Google Scholar
Gröhl, J., Schellenberg, M., Dreher, K. & Maier-Hein, L. Deep learning for biomedical photoacoustic imaging: a review. Photoacoustics 22, 100241 (2021).
Google Scholar
Van Dyk, J., Battista, J. J. & Bauman, G. S. in The Modern Technology of Radiation Oncology Vol. 3 (ed. Van Dyk, J.) 361–412 (Medical Physics Publishing, 2013).
Ku, G., Wang, X., Stoica, G. & Wang, L. V. Multiple-bandwidth photoacoustic tomography. Phys. Med. Biol. 49, 1329 (2004).
Google Scholar
Gutta, S. et al. Deep neural network-based bandwidth enhancement of photoacoustic data. J. Biomed. Opt. 22, 116001 (2017).
Google Scholar
[ad_2]