[ad_1]
I remember in my early days my old astronomy club had a monochrome CCD camera from SBIG, which was used for scientific projects. The club opened its doors to students allowing them to discover new supernovae and other cool features in the night sky involving photometry.
Years passed by and as an amateur astronomer I’ve dealt with DSLRs for the most part of my observing sessions. While DSLRs can be suitable for using them both at day and at night, unfortunately they can’t compete with dedicated astronomy cameras.
CMOS technology has advanced more and mover over the years as well, bringing their sensors to a very competitive level vs. CCD.
In a market the recipe to success is very simple and that comes with manufacturing cost. While CCD manufacturing has struggled enormously to lower its costs, CMOS has prevailed in the technology area and made itself more dominant over the years. Availability and cost efficiency are the two major factors in its success. Both sensors eventually convert light to electrons so the end result will be the same.
Thus, it brings us to the point of my blog entry here. I’ve recently acquired ZWO’s monochrome ASI1600GT. A camera that has a very effective cooling capability, high reliability, built-in filter wheel and lightweight. ZWO has done an awesome job and provided amateur astronomers with a very competitive and strong camera. I can’t wait for the California weather to offer me the chance to try it out very soon!
With my purchase I’ve also acquired a set of OIII (Oxygen), SII (Sulfur), H-alpha (Hydrogen) 7nm narrowband filters with a set of LRGB filters from SVBony as well.
[ad_2]